Wednesday 15 June 2016

EXPERIMENTAL GROUPS AND CONTROL GROUPS

EXPERIMENTAL GROUPS AND CONTROL GROUPS:

Experimental research requires, then, that the responses of at least two groups be compared. One group will receive some special  Treatment —the manipulation implemented by the experimenter—and another group will receive either no treatment or a different treatment. Any group that receives a treatment is called an Experimental group ; A group that receives no treatment is called a Control group. (In some experiments there are multiple experimental and control groups, each of which is compared with another group.)  By employing both experimental and control groups in an experiment, researchers are able to rule out the possibility that something other than the experimental manipulation produced the results observed in the experiment. Without a control group, we couldn’t be sure that some other variable, such as the temperature at the time we were running the experiment, the color of the experimenter’s hair, or even the mere passage of time, wasn’t causing the changes observed. For example, consider a medical researcher who thinks he has invented a medicine that cures the common cold. To test his claim, he gives the medicine one day to a group of 20 people who have colds and finds that 10 days later all of them are cured.  Eureka? Not so fast. An observer viewing this fl awed study might reasonably argue that the people would have gotten better even without the medicine. What the researcher obviously needed was a control group consisting of people with colds who  don’t get the medicine and whose health is also checked 10 days later. Only if there is a significant difference between experimental and control groups can the effectiveness of the medicine be assessed. Through the use of control groups, then, researchers can isolate specific causes for their findings—and draw cause-and-effect inferences. Returning to Latané and Darley’s experiment, we see that the researchers needed to translate their hypothesis into something testable. To do this, they decided to create a false emergency situation that would appear to require the aid of a bystander. As their experimental manipulation, they decided to vary the number of bystanders present. They could have had just one experimental group with, say, two people present, and a control group for comparison purposes with just one person present. Instead, they settled on a more complex procedure involving the creation of groups of three sizes—consisting of two, three, and six people—that could be compared with one another. 

Friday 3 June 2016

Description About Experimental Research

Experimental Research:
The only way psychologists can establish cause-and-effect relationships through research is by carrying out an experiment. In a formal Experiment, the researcher investigates the relationship between two (or more) variables by deliberately changing one variable in a controlled situation and observing the effects of that change on other aspects of the situation. In an experiment, then, the conditions are created and controlled by the researcher, who deliberately makes a change in those conditions in order to observe the effects of that change.
The change that the researcher deliberately makes in an experiment is called the Experimental manipulation. Experimental manipulations are used to detect relationships between different variables (Staub, 2011).
Several steps are involved in carrying out an experiment, but the process typically begins with the development of one or more hypotheses for the experiment to test. For example, Latané and Darley, in testing their theory of the diffusion of responsibility in bystander behavior, developed this hypothesis: The higher the number of people who witness an emergency situation is, the less likely it is that any of them will help the victim. They then designed an experiment to test this hypothesis.
Their first step was to formulate an operational definition of the hypothesis by conceptualizing it in a way that could be tested. Latané and Darley had to take into account the fundamental principle of experimental research mentioned earlier: Experimenters must manipulate at least one variable in order to observe the effects of the manipulation on another variable while keeping other factors in the situation constant. However, the manipulation cannot be viewed by itself, in isolation; if a cause-and-effect relationship is to be established, the effects of the manipulation must be compared with the effects of no manipulation or a different kind of manipulation.